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‣ Focused specialized tasks  (< 2010) 
‣ Data interpretation              (> 2010) 
‣ Data generation                  (> 2020)

Success stories

data: texts, images, sound, music, vidéo, etc.
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Cognitive Fonctions
‣ Reasoning 
Demonstrate, decide, 
plan, diagnose, design, 
explain, predict
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Figure 1: The structure of the model. 
 
diagnostic systems. Quantification of a Bayesian 
network consists of prior probability distributions 
over those variables that have no predecessors in the 
network and conditional probability distributions 
over those variables that have predecessors. These 
probabilities can easily incorporate available statistics 
and, where no data are available, expert judgment. A 
probabilistic graph represents explicitly independen-
cies among model variables and allows for represent-
ing a full joint probability distribution by a fraction of 
numbers that would be required if no independencies 
were known. Every independence leads to omitting 
an arc from the graph and leads to significant reduc-
tions of the numbers needed to fully quantify the do-
main. It should be stressed here that Bayesian net-
works are capable of representing any independen-
cies, not only those assumed to exist in early Bayes-
ian systems. In particular, a domain where no inde-
pendencies exist will be represented correctly by a 
Bayesian network that is a complete graph. The most 
important type of reasoning in Bayesian networks is 
known as belief updating, and amounts to computing 
the probability distribution over variables of interest 
conditional on others, observed variables. In other 
words, the probability distribution over the model 
variables is adjusted for a particular case, in which 
some of the model variables assume given values. 

While belief updating in Bayesian networks is in the 
worst case NP-hard,3 there are several very efficient 
algorithms capable of updating beliefs in networks on 
the order of hundreds of variables within seconds 
(this depends strongly on the topology of the network 
- the sparser a network, the shorter it takes to update). 
 

DIAGNOSTIC MODEL 
 
The starting point for building our model has been 
HEPAR's database of patient cases. The database 
available to us included about 600 patient records, 
each of these records was described by 119 features 
(binary, denoting presence or absence of a feature or 
continuous, expressing the value of a feature) and 
each record belonged to one of 16 liver disorders. 
One limitation of the HEPAR database is the assump-
tion that a patient appearing in the clinic has at most 
one disorder, i.e., disorders are mutually exclusive. 
The features can be divided conceptually into three 
groups: symptoms and findings volunteered by the 
patient, objective evidence observed by the physi-
cian, and results of laboratory tests. 
 
Model Structure 
We elicited the structure of dependencies among the 
variables from our domain experts: Dr. Hanna Wasy-
luk (third author) from the Medical Center of Post-
graduate Education, and two American experts, a pa-

[U. Pittsburg]

[INRIA]

7+7     → 2 
6+9     → 3 
8+8     → 4 
10+11 → 9 
4+9     → ?

• John is partnered with Peter 
• John is honest 
• Peter is partnered with Tom 
• Tom is dishonest 
Is one of them a honest person partnered with a dishonest one?



Cognitive Fonctions
‣ Perceiving  

Interpret signals from 
sensors about objects, 
people, sounds and scenes
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Cognitive Fonctions
‣ Acting and Interacting 
Move, navigate, manipulate objects  
Communicate and interact with others
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Introduction: Robots, Interaction and Knowledge

Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure 1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence –“Let’s make a brownie
for tonight”– to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts

6
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AI Fonctions
‣ Learning :  

from examples, experiences, tutor instructions to 
 Recognize objects, people and scenes 
 Acquire know-how and skills  
 Acquire knowledge, methods, models

10

Learning dexterous 
manipulation

[OpenAI]



Cognitive Fonctions
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Learning

Perceiving

Reasoning

Acting & interacting
Introduction: Robots, Interaction and Knowledge

Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure 1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence –“Let’s make a brownie
for tonight”– to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts
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AI Methods
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Optimization & Constraints

Logic
Deduction, abduction 

induction 

Networks
Hierarchies, ontologies, 

conceptual graphs
Knowledge

Da
ta

Probability & Statistics
Data analysis

Algorithms 
Software & Hardware



Logic
• John is partnered with Peter 
• John is honest 
• Peter is partnered with Tom 
• Tom is dishonest 
Is one of them an honest person partnered with a dishonest one?
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SAT, Prolog, ASP

a & a entails b 		 then b holds

• Abduction 

• Induction 

• Analogy 

b & a causes b		 then a is possible

• Deduction

13



Constraint networks
‣ Peter goes to work by car (30 to 40') or by bus (at least 60') 
‣ John gets there by bike (40 to 50') or motorcycle (20 to 30') 
‣ This morning : 

• Peter left home between 7:10 and 7:20. 
• John arrived at work between 8:00 and 8:10 
• Peter arrived 10 to 20' after John had left

14

Questions  
• Is the story coherent? 
• When did John leave? 
• Is it possible that he took his bike? 
• Does the story remain coherent if we learn that: 

- Peter's car was broken? 
- Peter and John met along the way?

Dep.J

Dep.P Arr.P

Arr.J
7h00

[30,40]

[60,∞][10,20]

[60,70]

[40,50]

[20,30][10,20]
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Neural Networks

<latexit sha1_base64="DElaKoFGXYiXPrvLtU3Ev9619wo="></latexit>

y = fwi(x1, . . . , xn)

Supervised learning:  
find parameters        to minimize prediction error<latexit sha1_base64="E1XTcnK0kMKY+eTAi7S4934E8ys="></latexit>wi
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g(w1x1 + w2x2 + w3x3)
<latexit sha1_base64="OGXYiixTsBJPeSjCeX7a6Qt7yw0="></latexit>x2

<latexit sha1_base64="QVYXWUCiZ4lsJVx1TeOj0slLgog="></latexit>x3
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Neural Networks
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Convolution NN



LLM: word prediction
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“Anyone speaking a language 
possesses, implicitly, an enormous 
knowledge of the statistics of the 
language. Familiarity with the words, 
idioms, cliches and grammar enables 
him to fill in missing or incorrect letters 
in proof-reading, or to complete an 
unfinished phrase in conversation”

Shannon (1916 - 2001) 

Prediction and Entropy of Printed English 
By C. E. SHANNON 

(Manuscript Received Sept. I5, I950) 

A. new of estimating the entropy and redundancy of a language is 
descnbed. This method exploits the knowledge of the language statistics pos-

those who speak the language, and depends on experimental results 
m of !!ext when the preceding text is known. Results of 
expenments m predictiOn are given, and some properties of an ideal predictor are 
developed. 

1. INTRODUCTION 

JN A previous paper1 the of a language have 
been defined. The entropy Is a statistical parameter which measures 

in a certain sense, how much information is produced on the average fo; 
letter text in the language. If the language is translated into binary 

dJgits (0 or 1) m the most efficient way, the entropy His the averaae number 
of binary digits required per letter of the original language. The redundancy, 
on the other hand, measures the amount of constraint imposed on a text in 
the language due to its statistical structure, e.g., in English the high fre-
quency of the letter E, the strong tendency of H to follow T or of C to follow 
Q. It was estimated that when statistical effects extending over not more 
than eight letters are considered the entropy is roughly 2.3 bits per letter, 
the redundancy about 50 per cent. 

then a new method has been found for estimating these quantities, 
which more sensitive and takes account of long range statistics, influences 
extendmg over phrases, sentences, etc. This method is based on a·study of 

predictability of English; how well can the next letter of a text be pre-
dicted ?receding N letters are known. The results of some experi-
ments m predictiOn will be given, and a theoretical analysis of some of the 
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy 
and From this analysis it appears that, in ordinary literary 
English, the long range statistical effects (up to 100 letters) reduce the 
entropy to something of the order of one bit per letter, with a corresponding 
redundancy of roughly 75%. The redundancy may be still higher when 
structure extending over paragraphs, chapters, etc. is included. However, as 
the lengths involved are increased, the parameters in question become more 

1 C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical 
Journal, v. 27, pp. 379-423, 623-656, July, October, 1948. 
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PREDICTION AND EKTROPY OF PRINTED ENGLISH 51 

erratic and uncertain, and they depend more critically on the type of text 
involved. 

2. ENTROPY CALCULATIOX FROM THE STATISTICS OF EKGLISH 

One method of calculating the entropy His by a series of approximations 
F o , F 1 , F 2 , • • • , which successively take more and more of the statistics 
of the language into account and approach Has a limit. FN may be called 
the entropy; it measures the amount of information or entropy due 
to statistics extending over adjacent letters of text. F N is given by1 

F N = - p(bi, j) log2 pbi(j) 
t •. J 

- L: p(bi, j) log2 p(bi, j) + L: p(bi) log p(bi) 
i,j i 

in which: bi is a block of T-1 letters [(..:Y-1)-gram] 

j is an arbitrary letter following b i 

p(bi, j) is the probability of theN-gram bi, j 

(1) 

pbi (j) is the conditional probability of letter j after the block b;, 

and is given by p(bi, j)/ p(bi). 
The equation (1) can be interpreted as measuring the average uncertainty 

(conditional entropy) of the next letter j when the preceding N-lletters are 
known. As is increased, F.v includes longer and longer range statistics 
and the entropy, H, is given by the limiting value ofF N as N YJ : 

(2) 

The ..:V-gram entropies FN for small values of N can be calculated from 
standard tables of letter, digram and trigram frequencies.2 If spaces and 
punctuation are ignored we have a twenty-six letter alphabet and F o may 
be taken (by definition) to be.log2 26, or 4. 7 bits per letter. F1 involves letter 
frequencies and is given by 

26 

F 1 = - L: p(i) log2 p(i) = 4.14 bits per letter. (3) 
i=l 

The digram approximation F 2 gives the result 

F2 = - L: p(i, j) log2 pi(j) 
i.j 

- L: p(i, j) log2 p(i, j) + L: p(i) log2 p(i) 
i,j i 

(4) 

= 7.70 - 4.14 = 3.56 bits per letter. 
2 Fletcher Pratt, "Secret and Urgent," Blue Ribbon Books, 1942. 

I 

NL is regular => statistical induction
From syntax to semantics ?
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[.81, .69]

[.22, .31]

Words that appear in similar contexts are semantically close



Word embedding (projection) 
To a word “rabat” → a vector [rabat] ∈ ℝn 
‣ Qualification  

[morocco] + [capital] ≃ [rabat] 
[france] + [teacher] ≃ [jules ferry]  

‣ Analogy 
[berlin] - [germany] + [togo]  ≃ [lomé] 
[boar] - [male] + [femelle] ≃ [sow] 
[best] - [good] + [bad] ≃[worst] 
[Cu] - [copper] + [gold] ≃ [Au] 

‣ Similarity 
[talk] . [gossip]  >  [talk] . [babble]

19



Large Language Model
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Transformer L

Transformer 2

Transformer 1

x ∈ ℝn  ≈ [help] 

[I] [came] [here] [to]



Pre-training
‣ Auto-supervised training

21

Anyone speaking a language possesses, 
implicitly, an enormous knowledge of the 
statistics of the language. Familiarity with 
the words, idioms, cliches and grammar 
enables him to fill in missing or incorrect 
letters in proof-reading, or to complete an 
unfinished phrase in conversation.

Transformer L

Transformer 2

Transformer 1

Anyone speaking a language

possesses



LLM Capabilities
‣ Wide competences in NLP tasks:  

translation, synthesis, analysis, comprehension, Q/A, dialogue & 
oral interactions, phonetics, versification, humor, proverbes, 
characterization of authors 
‣ Emergence of unexpected abilities 

• common-sense 

• calculus 

• logic 

• mathematics 

• programming, planning, etc

22



Suppose g(x) = f-1(x);  g(0) = 5;  g(4) = 7;  g(3) = 2;  g(7) = 9;  g(9) = 6  
what is f(f(f(6)))?

‣ There are different ways to approach this problem, but one possible 
method is to use the fact that g(x) =f-1(x) implies that f(g(x)) = x for any 
x in the domain of g. That is, applying f to both sides of the equation 
g(x) =f-1(x) gives f(g(x)) = f(f-1(x)) = x. This means that we can undo the 
effect of f by applying g, and vice versa. Using this idea, we can try to 
find f(6) by looking for the value of x such that g(x) = 6. From the given 
information, we see that g(9) = 6, so f(6) = f(g(9)) = 9. Similarly, we can 
find f(9) by looking for the value of x such that g(x) = 9. We see that 
g(7) = 9, so f(9) = f(g(7)) = 7. Finally, we can find f(7) by looking for the 
value of x such that g(x) = 7. We see that g(4) = 7, so f(7) = f(g(4)) = 4. 
Therefore, f(f(f(6))) = f(f(9)) = f(7) = 4.

23[S.Dubeck]



Within the duration of one year, a rabbit population first multiplies itself by a 
factor a and on the last day of the year b rabbits are taken by humans for 
adoption. Supposing that on first day of the first year there are x rabbits, we 
know that exactly 3 years afterwards there will be a population of 27x - 26 
rabbits. What are the values of a and b?

24

4 Mathematical abilities

In this section we begin to assess how well GPT-4 can express mathematical concepts, solve mathematical
problems and apply quantitative reasoning when facing problems that require mathematical thinking and
model-building. We demonstrate that GPT-4 represents a jump in that arena too with respect to previous
LLMs, even when compared to specially fine-tuned for math models such a Minerva. As it seems, how-
ever, GPT-4 is still quite far from the level of experts, and does not have the capacity required to conduct
mathematical research.

The reader is called into caution that interpreting the results in this section correctly is a di�cult exercise.
As we will see, GPT-4 can answer di�cult (indeed, competitive) high-school level math questions, and can
sometimes engage in meaningful conversation around advanced math topics. Yet, it can also make very basic
mistakes and occasionally produce incoherent output which may be interpreted as a lack of true understanding.
Its mathematical knowledge and abilities can depend on the context in a seemingly arbitrary way.

While it is tempting to evaluate GPT-4’s mathematical abilities using the same criteria used to assess
human abilities (e.g., solving standard examination questions), in light of the above, this will not provide a
complete picture of the model’s abilities. In order to really understand the model’s capabilities, we will need
to break down “mathematical abilities” into various sub-components and evaluate GPT-4’s performance in
each area. Throughout this section, we will use specific examples and discussions to illustrate the model’s
strengths and weaknesses, and attempt to pinpoint the possible underlying reasons for these discrepancies.

To give the reader a first impression regarding GPT-4’s performance in mathematical problem solving,
consider the example in Figure 4.14.

GPT-4 vs ChatGPT

Prompt: Within the duration of one year, a rabbit population first multiplies itself by a factor a and on the last

day of the year b rabbits are taken by humans for adoption. Supposing that on first day of the first year there are x

rabbits, we know that exactly 3 years afterwards there will be a population of 27x� 26 rabbits. What are the values of

a and b?

GPT-4:
Let’s call the rabbit population after one year y. We know that y = ax � b. After
two years, the population will be ay � b = a(ax� b)� b = a2x� ab� b. After three
years, the population will be a(a2x� ab� b)� b = a3x� a2b� ab� b. We are given
that this is equal to 27x� 26, so we have the equation:

a3x� a2b� ab� b = 27x� 26

We can rewrite this equation as:

a3x� 27x = a2b+ ab+ b� 26

Now we can factor out an x on the left side and a b on the right side:

x(a3 � 27) = b(a2 + a+ 1� 26/b)

We can see that a = 3 is a solution for the left side of the equation, so we can
substitute that in:

x(0) = b(9 + 3 + 1� 26/b)

This simplifies to:
0 = 13b� 26

Solving for b, we find that b = 2. So a = 3 and b = 2 are the values we are looking
for.

ChatGPT:
Let n be the total number of rab-
bits at the end of the first year.
Then,

n = ax

At the end of the third year, there
will be 27x � 26 rabbits. There-
fore,

(ax�b)(a2x�b)(a3x�b) = 27x�26

Expanding the left side of the
equation, we get

a6x3 � (a3 + a2 + a+ 1)bx2

+(a2 + a+ 1)b2x� b3

= 27x� 26

. . .

Figure 4.1: GPT-4 vs ChatGPT on a simple math question composed by the authors of the paper.

In order to solve the above question, one needs to first come up with the correct expression for the annual

4The question in the example was written by the authors rather than being taken from an online source. This was done to
ensure that the model is unlikely to have “memorized” the answer.

30
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Can you write a proof that there are infinitely many primes, with every line that 
rhymes? 

Yes, I think I can, 
Though it might take a clever plan. 
I'll start by noting Euclid's proof, 
Which shows that primes aren't just aloof. 
Assume we have a finite list, 
Of primes, and that none have been missed. 
Multiply them all together, 
And add one, just to be clever. 
The result will be a number, 
That has no prime factors, oh wonder! 
But every number has a prime, 
That divides it, it's just a matter of time. 
So we've found a contradiction, 
And our finite list needs eviction. 
There must be infinitely many primes, 
And that's the end of my rhyming lines.

25[S.Dubeck]
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Outline

✓What is AI ? 

✓History 

✓Fonctions & methods 

‣ Potential et achievements in AIED 

‣ Limitations & risks
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Potential
‣ Practice-based learning with adequate adaptation to 

• the learner: precise individual profiling 
• the learning progress: continuous monitoring and assessment 
• the learning domain 
• the chosen pedagogy 
• the group 
• the social environment 

‣ Use of powerful computational tools 

• graphical representation, visualization, simulation, virtual reality 

• gaming and serious games 

• networking, collaborative problem solving and learning 
‣ Widely and cheaply scalable, in principle

28

Co-Designing Wearable Cognitive Augmentation for K-12 Teachers LAK’18, March 7—9, 2018, Sydney, NSW, Australia 

 

 

summarizing patterns across participants’ responses, by 
iteratively clustering these quotes based on content similarity, 
into a hierarchy of increasingly abstract, emerging themes [9, 11]. 

We conducted several Interpretation Sessions, and the 
resulting 655 quotes were iteratively synthesized into 77 level-1 
categories, 23 level-2 categories, 10 level-3 categories, and 7 level-
4 categories. Key findings (level-4) are highlighted below. 

4.3.1 Student-level indicators. Five major categories of student 
learning states and behaviors emerged from these co-design 
sessions, as shown in Figure 1. Teachers strongly preferred to 
keep these indicators simple – displaying a single graphical 
symbol above each student’s head (as in Figure 2, left), to avoid 
information overload. However, it was important to teachers that 
they could access brief elaborations on-demand (e.g., by gazing at 
an indicator, as in Figure 3, left), which could aid in understanding 
why an indicator was appearing for a student at a particular time. 

4.3.2 Sequences of student states can be information-rich. In 
addition to seeing indicators reflecting a student’s current “state” 
teachers highlighted the usefulness of seeing detected states 
preceding the current state. For example, if a student is currently 
“idle” or “misusing the software” in some way, it can be useful to 
know whether that student was also recently struggling. Teachers 
would then interpret the prior struggle as a potential cause of the 
current behavior and respond accordingly. 

4.3.3 The classroom as a dashboard Teachers remarked that it 
felt natural to reference information displays that were distributed 
throughout their physical classroom spaces. In the absence of a 
dashboard, teachers were used to monitoring their students by 
scanning the physical classroom (e.g., reading student body 
language), and “patrolling” rows of student seats, to catch glances 
of students’ screens. One teacher remarked, “I would also use their 
body language to judge the situation, but the initial [alert] would 
help, so I know to go over there.” Teachers also revealed that they 
already used their classrooms as distributed information displays. 

For example, during a typical class session, teachers would often 
leave notes and images for themselves on boards or projected 
displays, to reference throughout the session. 

4.3.4 Need for selective shared awareness. All participating 
teachers noted that the analytics they found most useful in 
informing their real-time decision-making tended to be ones they 
would not be comfortable sharing with students. Teachers 
expected that these analytics could do more harm than good, by 
promoting unhealthy social comparison and competition among 
students (cf. [1, 13]). As one teacher put it, “In middle school, kids 
don’t know what they don’t know [but] kids care so much about 
how they’re seen by others … [they] don’t want to look stupid or 
feel stupid.” However, teachers also noted they would want a 
mechanism to selectively share particular analytics during class. 
Five out of eight teachers suggested it would be useful to 
customize the visibility of analytics displays on a class-by-class 
basis. All of these teachers anticipated an interaction effect in 
which real-time analytics might motivate higher-achieving classes 
by promoting competition, but demotivate lower-achieving 
classes. 

4.3.5 Ground automated inferences in ‘raw’ student artifacts. 
Much of the appeal of the glasses lay in their potential to offload 
the task of noticing key events in the classroom, via automated 
inferences. However, teachers also emphasized the importance of 
having access to “raw” student-generated artifacts in a familiar 
format. For example, the mock-ups of “deep-dive” screens shown 
in Figure 2 display individual students’ greatest “areas of 
struggle”. For each area, raw examples of errors that the student 
has recently exhibited are also shown. Showing these example 
errors is crucial not only in helping the teacher perform further 
diagnosis, but also in supporting teacher trust (cf. [15]) or enabling 
the teacher to “override” the system’s judgments if needed. 

4.3.6 Enable teachers to “peek” at student solution paths. In 
addition to presenting teachers with summaries of a student’s 

   

Figure 2.  Design mock-ups that emerged during lower-fidelity prototyping sessions.  Le": Teacher’s default view of the 
class. Each student has an indicator display floating above her/his head, and two class-level analytics displays are 
positioned at the front of the class. One shows skills practiced by many students but mastered by few; the other shows 
errors recently exhibited by many students.  Right:  Deep-dive screens shown if a teacher ‘clicks’ on an indicator.  
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Potential
‣ Access to enormous repertoires of knowledge and data 

• Knowledge widely spread, cheaply searched 

• Knowledge highly dynamic 
no longer a stable, comforting, immutable reference 

• Web drowned in a noisy, corrupted flood of information 
- Distinction between knowledge and belief blurred 
- Information assessment, qualification and filtering strongly needed 

‣ Fills weaknesses of schools and teachers (inadequately ?) 

• Shortage and lack of time 

• Insufficient training 

• Obsolete teaching practices and objectives
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Achievements 
‣ A well established research area 

• IAIED society: active for 31 years 

• IJAIE: started in 1989, 34 volumes 
‣ Numerous developments 

• Learning Management Systems (LMS) 

• Intelligent Tutoring Systems (ITS) 
- Knowledge-intensive 
- Strong industrial investments 
- Assessment: rather weak  

and partial
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Active e-learning for reading
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• domain model 
• student model 
• pedagogy model 
• interface model

correctly identified word. This allows post-test assessment
of the learning process.

Experimental Setup
Robotic platform
For the social robotic platform we used Dragonbot (Setapen
2012), a squash-and-stretch Android smartphone based
robot that. The facial expression, sound generation and
part of the logic is generated on the smartphone, which is
mounted on the face of the robot. The robot appears to be a
soft, furry, fanciful creature that is designed to engage chil-
dren. DragonBot is a very expressive latform and has a large
repertoire of possible facial expressions and actions. We in-
stalled a commercial child-like voice for the text-to-speech
software on the smartphone, to facilitate a more generic and
engaging interaction.

Initial assessment
During the introduction to the study, the child is asked to
spell her name, and is informed that she is going to play
word games with the experimenter and then with the robot.
The first “word game” is the TOWRE word assessment test,
in which the experimenter asks the child to read words from
lists, as fast as she could, for 45 seconds. The raw TOWRE
score is defined as the total number of correctly read words
during these 45 seconds. We administered both sight and
phonetic word lists, where the total raw score reported here
is the sum of the two tests’ raw score. We used this informa-
tion, i.e. which words are read correctly and which are not,
to initialize the knowledge of the child’s reading skill. Thus,
even prior to the interaction, there is some baseline of the
child’s reading vocabulary.

Robot interaction
The child sits next to a small table upon which there is a
tablet and the robot, Fig. 1. The robot is “sleeping”, i.e. its
eyes are closed, and it is introduced as “Parle, a young robot
that just learned how to speak and wants to learn to read”.
The robot awakens, yawns (an overt motion and sound), and
introduces itself: “I am Parle, we are going to play word
games together.” The speech is interspersed with facial ex-
pressions and sounds, to create a more engaging interaction.

The first phase of interaction is a pre-test, during which
the robot asks the child to teach him some words. It verbally
asks the child to show it a word, e.g. “dragon”, whereupon
the word, and four distractors appear on the tablet. The child
then needs to tap on the correct word. During this phase, the
word is chosen according to the active-learning method, i.e.
the word is the one that maximizes the expected informa-
tion gain. The distractors are selected from the same vocab-
ulary: two words which are most similar, i.e. smallest dis-
tance metric from the selected word; one word that the child
should know, according to the assessment; and one word that
the child should not know how to read. This is repeated ten
times, to get a thorough assessment of the child’s reading
knowledge.

The second, and main phase of the interaction, the story
phase, is based on an in-house developed app game that en-

Figure 1: The experimental setup.

ables the child to co-create a story with the robot. The game
contains three scenes, and several characters. The child can
move any character that appears on the screen. After each
movement, a sentence is automatically generated using a
novel auto-generation mechanism, which (i) randomly se-
lects an adjective for the character; (ii) detects the closest
other character for the story interaction; (iii) follows an xml
script of the plot of the story; and (iv) uses an open-source
natural language generation library to construct a full sen-
tence.

The xml plot files are constructed in a generic fashion,
such that (i) each character has a list of possible adjectives
(e.g. red, big), motions (e.g. fly, jump) and speech (e.g. roar,
squeak); (ii) the plot line is constructed of a sequence of
movements, speech, feelings and resolutions; and (iii) the
story conversation is constructed such that any sequence of
character selection generates a coherent story line. The result
of each movement is thus a full sentence that describes the
progression of the story plot. After several such sentences,
the scene changes and new characters are introduced, while
some of the old ones are taken away. There are three scenes
to the story, which ends with a final resolution sentence.

In the child-tablet-robot interaction, when the child moves
a character, the robot first speaks the generated sentence, and
then the sentence appears on the tablet above the scene. In
50% of the sentences, the robot asks the child to show it a
word, e.g. “I don’t know how to read the word dragon. Can
you show it to me?”. This resulted in an average of 11 words
per interaction. The child is then required to tap on the cor-
rect word. Each tapping on a word on the tablet results in the
tablet speaking that word. In this sense, the tablet is an infor-
mant, whereas the child and robot are both the students. If
the child is correct, the robot is excited, thanks the child and
the story continues. If the child is wrong, the robot expresses
frustration and asks the the word again. If the child is wrong
again, the tablet shows the correct word in an emphasized
manner and speaks it. The game then continues until the end
of the story.

In the last stage of the interaction, the post-test, the robot
again asks the child to teach it some words, similar to the

[G. Gordon, C. Breazeal, AAAI 2015]

Child “teaches” a social robot to read using a 
tablet to support a story-making game played by 
the child and robot



Teaching anatomy with the learner’s movements
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Scientific days, June 16th & 17th, 2014 

LBA for understanding leg biomechanics 

• Capture real motion 
• Deform the avatar to the user 
• Animate the user-specific avatar 
• Identify and visualize corresponding muscle 

activation 
 

16 

PhD work of  
Armelle Bauer 

Bauer et al. / Interactive Visualization of Muscle Activity During Limb Movements : Towards Enhanced Anatomy Learning

Figure 12: users : color and depth map, 1D muscles visualization, 3D muscles visualization

short term, we want to improve the personalization of the
avatar to reinforce embodiment. We also hope to visualize
information on other limbs and their motions. In the longer
term, we plan to automatically detect the user motion and
deliver knowledge accordingly.
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Teach a machine and learn how it works
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Many LMS & ITS products
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Automated Planning for an LMS
‣ Given learning domain & goals, synthesize a plan as a network of tasks 

adapted to student with timing and progression to achieve the goals 
‣ Plan updated in a receding horizon closed-loop feedback

36

J Sched

Fig. 4 Task A has deadlines in its decomposition stating that subtask
A2 must appear after A1 and also that A2 must start after 3 time units
and end before 5 time units from the beginning of the plan

over a Simple Temporal Network (Dechter et al. 1991) in
the algorithm shown in Fig. 2, Step 1b.

3. Temporally extended goals. A deadline activity (either a
task or an action or a goal) is an activity that may have
defined one or more metric temporal constraints over its
start or its end, or both. SIADEX also allows to post
deadline constraints on the start or the end of an activ-
ity (or both). Any sub-activity (either task or action) has
two special variables associated to it: ?start and ?end
that represent its start and end time points, and some con-
straints (basically <=, =, >=) may be posted to them.
In order to do that, when any activity appears in the goal
of a planning problem or in the decomposition of a higher
level task, it may be preceded by a logical expression that
defines the desired deadline, either simple or compound,
as it is shown in Fig. 4.

4. Temporal landmarking. SIADEX is also able to record
the start and end of any activity, and to recover these
records in order to define complex synchronisation
schemes between either tasks or actions as relative dead-
lines with respect to other activities. In particular, thanks
to the expressive power of temporal constraints networks
and to this landmarking, an HTN planning domain may
explicitly encode all of the different orderings included
in Allen’s algebra (Allen 1983) between two or more
tasks, between two or more actions or between tasks and
actions.

5. Timed initial literals, as defined in PDDL 2.2 (Edelkamp
and Hoffmann 2004), are also easily supported by
SIADEX to represent timed exogenous events, that is,
events that are produced (and possibly repeated) along
the timeline outside of the control of the planner.

In any case, our planning system SIADEX is able to ob-
tain timed plans with a rich temporal structure in the form
of a Gantt chart for further study or execution.

4 Automatic building of HTN planning domains and
problems for a LMS

The main idea behind this approach is that AI planning tech-
niques may be used to automatically generate a customised
learning design under a life-cycle based on the following as-
sumptions (see Fig. 5):

Fig. 5 General view of our approach

1. The LOR is labelled using an extensive set of standard
metadata that is described along this section.

2. (Dotted lines) The instructor explores the repository and
defines the learning objectives of a given course.

3. (Dashed lines) Our system explores the different databa
ses of user profiles, learning objects and learning objec-
tives and generates the necessary PDDL files (Long and
Fox 2003; Castillo et al. 2006) for our HTN planner to
run. The planner is executed, and a customised learning
plan is obtained for every student registered at the same
course.

4. (Dotted/dashed lines) The learning plan is translated into
a playable form, understandable by the LMS.

5. The plan is executed (or played) by the student to follow
the course adapted to its own features and needs.

In order to guarantee a valid extraction of an HTN plan-
ning domain and problem as well as a successful personali-
sation of the learning path, at least the following set of meta-
data must be present in the labelling of the learning objects.

1. User profiles. User profiles must be available and they
should contain at least: academic history, performance
level, learning style, hardware/software features, and
level of English or other foreign languages.

2. Hierarchical structure. Hierarchical relations of the
form chapter/sub-chapter/section/lesson, where the les-
son is the atomic part of the hierarchy, are encoded by
means of the is-part-of relational metadata. This
allows us to encode hierarchical dependencies between
learning objects so that, if a higher level object is in-
cluded in a learning path, it is assumed that its con-
stituent parts will also have to be included. A learn-
ing object may be part of multiple compound objects.
A learning path, that is, the sequence of learning objects
that is to be followed by a student will only be made
up of atomic objects. This means that compound objects
might have no content, except those included in their con-
stituent atomic objects because they primarily act as the
underlying structure of the course. According to Fig. 6,
is-part-of(AI-Search-intro) = {AI-Search}.

[Castillo et al., Automatic generation of planning domains for e-learning, 2009]



Automated Planning for AIED
‣ Learning Objects Repository: ontology of components and classes, 

hierarchy and dependency constraints, importance, difficulty, timing, 
resources (educational knowledge description standard ANSI/IEEE 2007) 
‣ User profile: academic history, performance levels in languages and other 

areas, learning style, support environments 
‣ Extracted planning domain: educational actions, tasks and methods

37
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Fig. 13 Part of the domain extracted from the sample repository of
Fig. 11. Action AIDFS-Algorithmmay be included in two different
ways to adapt the learning path to the existing conditions. Each of them
would have its own durations, but one of them is intended only for
students with multimedia equipment and the other may be followed by
any student

Fig. 14 Part of the domain extracted from the sample repository of
Fig. 11. Action AIDFS-Examples is optional. This is encoded as
a compound task with two alternative decompositions. The first one,
labelled as “Yes” tries to include the object AIDFS-Examples. If a
backtracking is produced during the search, then the method labelled
as “No” introduces an empty decomposition, that is, it does not include
the object

to each student might be different depending on their con-
text. This is encoded as an additional compound task that
includes a unique method containing a single action. There
will be a primitive action for each atomic object so that the
compound task forces the introduction of one of these ac-
tions that will be found by the planner by search and back-
tracking in the case that the conditions of the actions are not
met (see Fig. 13).

For every atomic learning object labelled as “optional”,
a new task is created with two different methods, one of
them includes its corresponding action and the other does
not. If no other precondition is specified, optional objects
will only be excluded if the student has a deadline for ending
the course and there is no available time to include the op-
tional object. For example, Fig. 14 shows how the optional
object AIDFS-Examples is treated.

Figure 15 shows another feature of the translation algo-
rithm. Only students with higher performance are requested
to follow those objects explicitly labelled as “DIFFICULT”.

Fig. 15 Part of the domain extracted from the sample repository of
Fig. 11. Action AIDFS-Lecture from Fig. 12 is also classified
as “DIFFICULT”. This is encoded as an additional compound task
with two alternative decompositions. The first one includes the ob-
ject AIDFS-Lecture only for high-performance students; the other
method does not include the action for lower performance students

Fig. 16 Part of the domain extracted from the sample repository of
Fig. 11. Task AI-DFS is decomposed depending on the Honey–Alonso
learning profile of the student

4.4.2 Extracting compound tasks

Once all the primitive actions have been extracted, the re-
maining of the HTN hierarchy is created. In order to do that,
the is-part-of metadata is used so that every compound
learning object is translated into an HTN-PDDL compound
task (Castillo et al. 2006) and its children learning objects
are translated as its decomposition. As stated in Step 3c of
the algorithm shown in Fig. 9, a given compound task might
have multiple decompositions to encode different ways of
adapting a learning path to the individual features of every
student (Fig. 16).

And finally, there is the case that a compound object re-
quires another object that belongs to any other course. Fig-
ure 11 shows that the object AI-Search depends on the
object DS-Graphs that belongs to another course, let us
say, Data Structures. In this case, the task AI-Search might
include two different decompositions, one of them for the
case that the student has successfully passed this required
object, and the other one for the case that the student has
not passed this object and thus, will have to be included in
his/her learning path. This case is exemplified in Fig. 17.



Automated Planning for AIED
‣ Learning Objects Repository: ontology of components and classes, 

hierarchy and dependency constraints, importance, difficulty, timing, 
resources (educational knowledge description standard ANSI/IEEE 2007) 
‣ User profile: academic history, performance levels in languages and other 

areas, learning style, support environments 
‣ Extracted planning domain: educational actions, tasks and methods 
‣ Generated plan: network of tasks with timing and progression for a given 

student and learning goals 
‣ Experiments: with an LMS (Moodle), a LOR in informatics (about 50 

components), a few students (17, of 6 different styles) and adapted plans 
(40 to 50 learning actions with and w/o deadlines) 
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Automated Planning for AIED
‣ Advantages 

• Ease formalizing LOR metadata and learning goals 
⟹ enabling technology for the adoption of standards.  

• Immediate design of learner-centered plans: increase teacher 
productivity,  allowing to focus on building richer LORs and courses.  

• Takes into account all metadata defined by instructors  
⟹ improved quality and adaptation of plans  

• Based on standard LMS metadata  
⟹ automation technology easily adoptable in other LMS
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[Castillo et al., Automatic generation of planning domains for e-learning, 2009]



Outline

✓What is AI ? 

✓History 

✓Fonctions & methods 

✓Potential et achievements in AIED 

‣ Limitations & risks
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Limitations
‣ State-of-the-art current limitations 

• Unreliable, faulty models 
• Narrow and brittle knowledge 
• Lack of qualification of likeliness of assertion 

‣ Fundamental limitations 
• No absolute rationality 

 
 
 
 
 

• AI is “intelligence w/o thoughts”, 
which is critical for an educator

41

If intelligence is the capability of 
(1) choosing one’s goals, and 
(2) acting for the best to reach them, 

then AI can help only for (2)

“We deliberate not about ends, 
but means” [Aristotle]



Risks
‣ Ethics 

• Data: biases, privacy, fairness, transparency, trustworthiness, 
ownership 

• Pedagogy: dignity, autonomy, agency, what is assessed 
‣ Amplify “education-as-a-business”, driven by market rules 
‣ May easily manipulate the learner 
‣ May augment dubious existing practices, e.g.,  

• “Teaching for the exams”: exams determine what is taught,  
instead of the real needs of the learner and society 

• AI very good at exams; grading an unappealing chore to teachers 
‣ May tend to supplement the teacher

42
[Holmes et al., Council of Europe report 2022]

Alternatively, AI may allow for better continuous monitoring, 
feedback and assessments

Alternatively, AI may empower the teacher



Desirable perspectives
‣ Teaching assistant: help assemble and organize resources, support 

students, monitor progress, moderate groups and forums 
‣ Parents adviser: about the domain, the pedagogy, the student 
‣ Lifelong mentor, virtual pear and digital twin 
‣ AI for educational research: modeling how learning works 
‣ AI to improve how we teach   
‣ AI to reassess what we teach 

• More about the fundamentals then the techniques 
- Problem solving 
- Reasoning, using knowledge, querying, modeling the world 
- Social awareness  
- Using AI machines 

• Priority: educating responsible citizens for the world of tomorrow  
rather than training for the demands of market

43


